Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 342: 140136, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37699456

RESUMO

Clarifying the antibacterial mechanism of silver (Ag)-based materials is of great significance for the rational design, synthesis, and evaluation of antimicrobials. Herein, detailed description of the antibacterial mechanism of a synthesized silver deposited fullerene material (Ag(I)-C60) towards Staphylococcus aureus was surveyed from the point of view of DNA damage by ultraviolet-visible spectroscopy (UV-vis), inductively coupled plasma mass spectrometry (ICP-MS), and liquid chromatography-mass spectrometry (LC-MS). The model material, Ag(I)-C60, was prepared by liquid-liquid interfacial precipitation method, and characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), thermos-gravimetric analysis (TGA), and nitrogen adsorption/desorption analysis. Ultra-efficient bacteriostatic rate of Ag(I)-C60 was found to be 88.98% under light irradiation for 20 min. UV-vis measurement of the composition changes of four DNA bases showed that they changed in the presence of Ag(I)-C60 under light irradiation, suggesting Ag(I)-C60 could destroy the cells and genetic material of Staphylococcus aureus and thereby inhibit its growth and reproduction. ICP-MS analysis demonstrated the releasing behavior of Ag+ from Ag-based materials. Finally, the transformation pathway of G, A, C, and T were measured by LC-MS, demonstrating the conversion of Adenine (m/z 136.06) to 8-OH-Ade (m/z 174.04). These collective results suggested that Ag(I)-C60 was a new ultra-efficient antibacterial by slowly releasing Ag+ in water and producing a large amount of ROS under light.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...